Foucault,Kadan and Kandel(2009)[7]分别讨论了流动性提供者(被动挂单交易者)和流动性消耗者(机构投资者)在不同市场状态下基于成本收益考虑的博弈过程,发现流动性提供者反应速度的提高会降低买卖差价。Gsell(2008)[11]假设高频交易采取做市交易策略,通过构建人工金融市场模型进行模拟,发现高频交易降低了市场波动率。Brogaard(2010)[3]使用OLS方法分析了26个被NASDAQ认定为从事高频交易的自营商在120只股票上的订单和交易数据,发现高频交易者倾向于采用价格翻转策略而不存在系统性的抢单行为;高频交易提高了市场有效性,同时可能降低了市场波动率。Hasbrouck and Saar(2010)[13]使用二阶段最小二乘法(2SLS)分析了NASDAQ市场上的订单流数据,分别研究高频交易在不同波动率水平下行为模式及其对市场的影响,结果显示高频交易提高了市场流动性。
Hendershott and Riordan(2009)[15]利用VAR和VMA(vector moving average)模型研究了由德意志证交所的Xetra自动交易平台(automated trading program)提供的DAX30种股票的交易记录,发现高频交易总体上提高了价格有效性和市场流动性,但是它会在流动性充足时提供流动性,在流动性匮乏时反而消耗流动性;此外,没有证据证明高频交易增加了市场波动性。由于纽约证交所(NYSE)不提供相应的订单流和交易数据,Hendershott,Jones and Menkveld(2011)[14]采用该市场上的电子通信量(包括订单的上报、撤销和成交)作为高频交易流动性供给的代理变量,发现高频交易提高了标的物的市场流动性和订单的信息效率,并且降低了市场买卖价差。
Hendershott and Riordan(2009)[15]认为算法交易在价格发现方面的影响大于人工交易。Chaboud,Chiquoine and Hjalmarsson et al.(2009)[4]发现算法交易策略相关性较高,因此存在由于策略同质性引发市场价格风险的可能性。Cvitanic and Kirilenko(2010)[5]构建了一个支持限价订单的多期市场模型,并在限定低频交易者交易行为的情况下,在市场上加入高频交易者以研究其对市场价格形成机制的影响。
他们认为高频交易者会在没有新的信息集的情况下改变平均交易价格。Zhang(2010)[26]使用双重差分模型分析CRSP和Thomson Reuters数据库提供的股票交易数据,发现在控制公司基本面变动等造成股价波动的其他外部影响之后,高频交易与股价波动呈正相关关系,这种正相关关系对市值较大、机构投资者持有较多的股票尤其明显,且随着市场不确定性的增加而增加;高频交易会导致股价过度反应,从而扰乱资产价格对公司基本面的反映。但也有一些研究则认为高频交易对价格影响不大,或改善了市场价格发现机制。
例如,Brogaard(2010)[3]认为高频交易对价格发现机制带来了实质性的提高,大部分高频交易使得价格有着均值回归的特性,因此可以起到稳定价格的作用;高频交易者的撤单在大部分情况下都迅速被其他交易者所填补,因此对市场影响有限。此外,事件调查大多认为高频交易不是引发市场风险的罪魁祸首。
Kirilenko,Kyle and Samadi et al.(2010)[18]针对2010年5月6日美股市场的瞬间暴跌(The Flash Crash),比较了股灾当天及前三天共四个交易日内高频交易与非高频交易的交易量,发现高频交易者的持仓总数很少超过3000个合约,而当天的暴跌则由75000个合约的卖出指令引发,高频交易的影响不足以导致当日的市场暴跌。这否认了之前认为美股暴跌千点是由高频交易造成的说法。